Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | 1x 1x 18x 227x 121x 121x 63x 24x 24x 24x 28x 31x 54x 27x 56x 56x 56x 56x 30x 28x 58x 57x 51x 30x 30x 30x 30x | import { SRPParameters } from "./parameters"; import { bigIntToArrayBuffer, generateRandomBigInt, hash, hashPadded, stringToArrayBuffer, arrayBufferToBigInt, hashBitCount, modPow, } from "./utils"; /** * Default routines used for SRP calculation. * * These routines were implemented based on the Java Nimbus-SRP implementation. * This project can be found at https://bitbucket.org/connect2id/nimbus-srp * and the reference routine implementation at: * https://bitbucket.org/connect2id/nimbus-srp/src/c88fec8a6dcd46dacf1e031b52f9bffca902acf4/src/main/java/com/nimbusds/srp6/SRP6Routines.java */ export class SRPRoutines { constructor(public readonly parameters: SRPParameters) {} public hash(...as: ArrayBuffer[]): Promise<ArrayBuffer> { return hash(this.parameters, ...as); } public hashPadded(...as: ArrayBuffer[]): Promise<ArrayBuffer> { const targetLength = Math.trunc((this.parameters.NBits + 7) / 8); return hashPadded(this.parameters, targetLength, ...as); } public async computeK(): Promise<bigint> { return arrayBufferToBigInt( await this.hashPadded( bigIntToArrayBuffer(this.parameters.primeGroup.N), bigIntToArrayBuffer(this.parameters.primeGroup.g), ), ); } public async generateRandomSalt(numBytes?: number): Promise<bigint> { const HBits = await hashBitCount(this.parameters); // Recommended salt bytes is > than Hash output bytes. We default to twice // the bytes used by the hash const saltBytes = numBytes || (2 * HBits) / 8; return generateRandomBigInt(saltBytes); } public async computeX(I: string, s: bigint, P: string): Promise<bigint> { return arrayBufferToBigInt( await this.hash( bigIntToArrayBuffer(s), await this.computeIdentityHash(I, P), ), ); } public async computeXStep2( s: bigint, identityHash: ArrayBuffer, ): Promise<bigint> { return arrayBufferToBigInt( await this.hash(bigIntToArrayBuffer(s), identityHash), ); } public async computeIdentityHash(_: string, P: string): Promise<ArrayBuffer> { return await this.hash(stringToArrayBuffer(P)); } public computeVerifier(x: bigint): bigint { return modPow( this.parameters.primeGroup.g, x, this.parameters.primeGroup.N, ); } public generatePrivateValue(): bigint { const numBits = Math.max(256, this.parameters.NBits); let bi: bigint; do { bi = generateRandomBigInt(numBits / 8) % this.parameters.primeGroup.N; } while (bi === BigInt(0)); return bi; } public computeClientPublicValue(a: bigint): bigint { return modPow( this.parameters.primeGroup.g, a, this.parameters.primeGroup.N, ); } public isValidPublicValue(value: bigint): boolean { return value % this.parameters.primeGroup.N !== BigInt(0); } public async computeU(A: bigint, B: bigint): Promise<bigint> { return arrayBufferToBigInt( await this.hashPadded(bigIntToArrayBuffer(A), bigIntToArrayBuffer(B)), ); } public async computeClientEvidence( _I: string, _s: bigint, A: bigint, B: bigint, S: bigint, ): Promise<bigint> { return arrayBufferToBigInt( await this.hash( bigIntToArrayBuffer(A), bigIntToArrayBuffer(B), bigIntToArrayBuffer(S), ), ); } public async computeServerEvidence( A: bigint, M1: bigint, S: bigint, ): Promise<bigint> { return arrayBufferToBigInt( await this.hash( bigIntToArrayBuffer(A), bigIntToArrayBuffer(M1), bigIntToArrayBuffer(S), ), ); } public computeClientSessionKey( k: bigint, x: bigint, u: bigint, a: bigint, B: bigint, ): bigint { const N = this.parameters.primeGroup.N; const exp = u * x + a; const tmp = (modPow(this.parameters.primeGroup.g, x, N) * k) % N; return modPow(B + N - tmp, exp, N); } } |